Tuesday, 12 September 2017

Liukuva Keskiarvo Mean Square Error


Tasoitustiedot poistavat satunnaisvaihtelut ja näyttävät trendejä ja syklisiä komponentteja. Aikaa otettujen tietojen kerääminen on jonkinlaista satunnaisvaihtelua. On olemassa menetelmiä satunnaisvaihtelun vaikutuksen kumoamisen vähentämiseksi. Teollisuudessa usein käytetty tekniikka tasoittaa. Tämä tekniikka, kun sitä käytetään oikein, paljastaa selkeämmin taustalla olevan trendin, kausittaiset ja sykliset komponentit. On olemassa kaksi erillistä tasoitusmenetelmää. Keskimääräiset menetelmät Eksponentiaaliset tasoitusmenetelmät Keskimäärän ottaminen on yksinkertaisin tapa tasoittaa tietoja Ensin tutkitaan joitain keskiarvoistamismenetelmiä, kuten kaikkien aiempien tietojen yksinkertainen keskiarvo. Varastonhoitaja haluaa tietää, kuinka paljon tyypillinen toimittaja toimittaa 1000 dollarin yksiköissä. Heshe ottaa näytteen 12 toimittajalta satunnaisesti ja saa seuraavat tulokset: Tietojen laskennallinen keskiarvo tai keskimääräinen keskiarvo 10. Päällikkö päättää käyttää tätä tyypillisen toimittajan menojen arviointina. Onko tämä hyvä tai huono arvio? Keskimääräinen neliövirhe on tapa arvioida kuinka hyvä malli on. Me laskemme keskimääräisen neliövirheen. Virheen todellinen summa vähennettynä arvioitu määrä. Virhe neliö on edellä oleva virhe, neliö. SSE on neliövirheiden summa. MSE on neliövirheiden keskiarvo. MSE: n tuloksia esimerkiksi Tulokset ovat: Virhe - ja nelikentävirheet Arvio 10 Kysymys: voimmeko käyttää ennusteiden ennakoitua keskiarvoa, jos epäillään kehitystä Katso alla oleva kaavio osoittaa selvästi, että emme saa tehdä tätä. Yhteenvetona todetaan, että kaikkien aiempien havaintojen yksinkertainen keskiarvo tai keskiarvo on vain arvioitu ennuste, jos ei ole trendiä. Jos on suuntauksia, käytä erilaisia ​​arvioita, jotka huomioivat trendin. Keskimääräinen painaa kaikki aiemmat havainnot yhtä lailla. Esimerkiksi arvojen 3, 4, 5 keskiarvo on 4. Tiedämme tietenkin, että keskiarvo lasketaan lisäämällä kaikki arvot ja jakamalla summa arvojen lukumäärän mukaan. Toinen tapa laskea keskiarvo on lisäämällä jokainen arvo jaettuna arvojen määrällä tai 33 43 53 1 1.3333 1.6667 4. Kerroin 13 kutsutaan painoksi. Yleensä: vasemmanpuoleinen vasen kansi (vasen kylmä) x1 vasen (frac right) x2,. ,, vasen (frac oikealle) xn. (Vasen (frac right)) ovat painoja ja tietenkin ne summaavat 1. Keskimääräisten ja eksponenttien tasoittamismallien siirtäminen Ensimmäisenä askeleena siirryttäessä keskimääriä, satunnaisia ​​kävelymalleja ja lineaarisia trendimalleja, ei-seulomalleja ja suuntauksia voidaan ekstrapoloida liikkuvan keskiarvon tai tasoitusmallin avulla. Perusoletus keskiarvojen ja tasoitusmalleiden takana on, että aikasarja on paikallisesti paikallaan hitaasti vaihtelevalla keskiarvolla. Siksi siirrymme (paikallinen) keskimäärin arvioimaan nykyisen keskiarvon ja käytämme sitä lähitulevaisuuden ennusteena. Tätä voidaan pitää kompromissina keskimallin mallin ja satunnaiskäytävän ilman ajoväylämallia. Samaa strategiaa voidaan käyttää arvioimaan ja ekstrapoloimaan paikallinen trendi. Liikkuvaa keskiarvoa kutsutaan usein alkuperäisen sarjan quotsmoothedquot-versioksi, koska lyhyen aikavälin keskiarvotuksen vaikutus tasoittaa alkuperäisen sarjan kourat. Säätämällä tasoitustasoa (liikkuvan keskiarvon leveys) voimme toivoa jonkinlaisen optimaalisen tasapainon keski - ja satunnaiskäytävien mallien välillä. Yksinkertaisin keskitemallin malli on. Yksinkertainen (yhtäpainoinen) liikkuva keskiarvo: Tuon ajan t1 ennuste, joka on ajan hetkellä t, vastaa viimeisimpien m-havaintojen yksinkertaista keskiarvoa: (Tässä ja muualla käytän symbolia 8220Y-hat8221 seisomaan ennusteessa aikasarjasta Y, joka on tehty mahdollisimman aikaisemmalla ajankohdalla tietyn mallin mukaan.) Tämä keskiarvo on keskimäärin ajanjaksolle t - (m1) 2, mikä tarkoittaa sitä, että paikallisen keskiarvon arvioidaan jäävän tosi - paikallisen keskiarvon arvo noin (m1) 2 jaksolla. Täten sanomme, että keskimääräisen liikevoiton keskimääräinen ikä on (m1) 2 sen ajanjakson suhteen, jolle ennuste lasketaan: tämä on aika, jolla ennusteiden taipumus jää jäljessä datan käännekohdista . Jos keskiarvo lasketaan esimerkiksi viimeksi kuluneiden viiden arvon perusteella, ennusteet ovat noin 3 jaksoa, jotka ovat myöhässä reagoimassa käännekoihin. Huomaa, että jos m1, yksinkertainen liikkuva keskiarvo (SMA) - malli vastaa satunnainen kävelymalli (ilman kasvua). Jos m on hyvin suuri (verrattavissa arviointikauden pituuteen), SMA-malli vastaa keskiarvoa. Kuten ennustamomallin minkä tahansa parametrin tapauksessa, on tavallista säätää k: n arvo, jotta saadaan parhaat tiedot, toisin sanoen pienimmät ennustevirheet keskimäärin. Tässä on esimerkki sarjasta, joka näyttää satunnaisvaihteluita hitaasti vaihtelevan keskiarvon ympärillä. Ensinnäkin yritä sovittaa se satunnaisen kävelymallin kanssa, joka vastaa yhtä yksinkertaista liukuvaa keskiarvoa: Satunnaiskäytävä malli reagoi hyvin nopeasti sarjan muutoksiin, mutta tällä tavoin se valitsee suurimman osan (satunnaisvaihtelut) samoin kuin kvotsignalquot (paikallinen keskiarvo). Jos me kuitenkin kokeillaan yksinkertaista liikkuvaa 5: n keskiarvoa, saadaan paremman näköisiä ennusteita: 5-aikavälinen yksinkertainen liukuva keskiarvo tuottaa huomattavasti pienempiä virheitä kuin satunnaiskäytävä malli tässä tapauksessa. Tämän ennusteen tietojen keskimääräinen ikä on 3 ((51) 2), joten se kestää käännekohdat jäljessä noin kolmella jaksoilla. (Esimerkiksi taantuma näyttää tapahtuneen kaudella 21, mutta ennusteet eivät kääntyneet vasta useita jaksoja myöhemmin.) Huomaa, että SMA-mallin pitkän aikavälin ennusteet ovat horisontaalinen suoraviivaisesti, kuten satunnaisessa kävelyssä malli. Siksi SMA-mallissa oletetaan, että datassa ei ole trendiä. Kuitenkin sattumanvaraisen kävelymallin ennusteet ovat yksinkertaisesti yhtä kuin viimeinen havaittu arvo, SMA-mallin ennusteet ovat yhtä kuin viime arvojen painotettu keskiarvo. Statgraphicsin laskemat luottamusrajat yksinkertaisen liukuvan keskiarvon pitkän aikavälin ennusteisiin eivät ole laajemmat, kun ennustehorisontti kasvaa. Tämä ei tietenkään ole oikea. Valitettavasti tilastollista teoriaa ei ole, joka kertoo, kuinka luottamusvälit pitäisi laajentaa tähän malliin. Kuitenkin ei ole kovin vaikeaa laskea empiirisiä estimaatteja luottamusrajoista pidemmille horisonttiennusteille. Voit esimerkiksi luoda laskentataulukon, jossa SMA-mallia käytetään ennustamaan 2 askeleen eteenpäin, 3 askeleen eteenpäin jne. Historiallisen datanäytteen sisällä. Sitten voit laskea virheiden näytteen vakiopoikkeamat kullakin ennustehorisontilla ja muodostaa sitten luottamusvälit pitkän aikavälin ennusteisiin lisäämällä ja vähentämällä sopivan keskihajonnan monikerrokset. Jos yritämme 9-aikavälin yksinkertaisen liukuvan keskiarvon, saamme vielä tasaisempia ennusteita ja enemmän jäljellä olevaa vaikutusta: Keskimääräinen ikä on nyt 5 jaksoa (91) 2. Jos otamme 19-vuotisen liikkumavälin keskiarvon, keski-ikä nousee 10: een. Huomaa, että ennusteet ovat nyt jäljessä käännekohdista noin 10 jaksoilla. Mikä taso on parasta tässä sarjassa Tässä on taulukko, joka vertaa virhetilastojaan, mukaan lukien myös 3-aikavälin keskiarvon: Malli C, 5-aikavälinen liukuva keskiarvo, tuottaa RMSE: n pienimmän arvon pienellä marginaalilla 3 - aika ja 9-aikavälin keskiarvo, ja muut tilastot ovat lähes identtisiä. Niinpä malleissa, joilla on hyvin samanlaiset virhetilastot, voimme valita, haluammeko ennustetta hieman reagoimista tai hieman sileämpää. (Palaa sivun yläreunaan.) Ruskeat Yksinkertainen eksponentiaalinen tasoitus (eksponentiaalisesti painotettu liukuva keskiarvo) Edellä kuvatulla yksinkertaisella liikkuva keskiarvoominaisuudella on epätoivottu ominaisuus, että se käsittelee viimeiset k-havainnot yhtä lailla ja jättää täysin huomiotta kaikki edelliset havainnot. Intuitiivisesti aiempia tietoja pitäisi diskontata vähitellen - esimerkiksi viimeisimmän havainnon pitäisi saada hieman enemmän painoa kuin toiseksi viimeisimmällä, ja toiseksi viimeisimmän pitäisi saada hieman enemmän painoa kuin kolmas viimeisin ja pian. Yksinkertainen eksponenttien tasaus (SES) - malli tekee sen. Anna 945 merkitä lonkkamurtumisvakio (numero välillä 0 ja 1). Yksi tapa kirjoittaa mallia on määrittää sarja L, joka edustaa nykyisen tason (eli paikallista keskimääräistä arvoa) sarjan arvioidut tiedot tähän asti. L: n arvo ajankohtana t lasketaan rekursiivisesti edellisestä omasta edellisestä arvostaan: Nykyinen tasoitettu arvo on siis interpoloitu edellisen tasoitetun arvon ja nykyisen havainnon välillä, missä 945 ohjaa interpoloidun arvon läheisyyttä viimeisimpään havainto. Seuraavan jakson ennuste on yksinkertaisesti nykyinen tasoitettu arvo: Vastaavasti voimme ilmaista seuraavan ennusteen suoraan edellisten ennusteiden ja aikaisempien havaintojen osalta jollakin seuraavista vastaavista versioista. Ensimmäisessä versiossa ennuste on interpolointi aikaisemman ennusteen ja edellisen havainnon välillä: Toisessa versiossa seuraava ennuste saadaan säätämällä edellistä ennustusta edellisen virheen suuntaan murto-osalla 945. aika t. Kolmannessa versiossa ennuste on eksponentiaalisesti painotettu (eli diskontattu) liukuva keskiarvo diskonttokertoimella 1 - 945: Ennustemallin interpolointiversio on yksinkertaisin käyttää, jos käytät mallia laskentataulukossa: se sopii yhteen yksisolu ja sisältää soluviitteitä, jotka osoittavat edellistä ennustetta, edellistä havaintoa ja solua, jossa arvo 945 on tallennettu. Huomaa, että jos 945 1, SES-malli vastaa satunnaisen kävelymallin (ilman kasvua). Jos 945 0, SES-malli vastaa keskiarvoa, olettaen, että ensimmäinen tasoitettu arvo on asetettu yhtä kuin keskiarvo. (Palaa sivun yläreunaan.) Yksinkertaisen eksponentti-tasausennusteen tietojen keski-ikä on 1 945 suhteessa ennusteeseen laskettuun ajanjaksoon. (Tämän ei pitäisi olla ilmeinen, mutta se voidaan helposti osoittaa arvioimalla ääretön sarja.) Yksinkertainen liukuva keskimääräinen ennuste on taipumus kääntää käänteitä noin 1 945 kaudella. Esimerkiksi kun 945 0,5 viive on 2 jaksoa, kun 945 0,2 viive on 5 jaksoa kun 945 0,1 viive on 10 jaksoa ja niin edelleen. Tietyllä keskimääräisellä ikäjaksolla (eli viivästymisnopeudella) yksinkertainen eksponenttien tasaus (SES) - ennuste on jonkin verran parempi kuin yksinkertainen liikkuva keskiarvo (SMA), koska se asettaa suhteellisen enemmän painoa viimeisimmälle havainnoinnille - e. e. se on hieman enemmän vastaavaa kuin viime aikoina tapahtuneet muutokset. Esimerkiksi yhdeksällä ehdolla olevasta SMA-mallista ja SES-mallilla, jossa on 945 0,2, molemmilla on keskimäärin 5-vuotiaita tietoja ennusteissaan, mutta SES-mallissa painotetaan enemmän kolmea viimeistä arvoa kuin SMA-mallissa ja Samanaikaisesti se ei kerta kaikkiaan yli 82 vanhoja arvoja yli 9 vanhoja kaistoja, kuten on esitetty tässä kaaviossa: SES-mallin toinen tärkeä etu SMA-mallissa on, että SES-malli käyttää tasausparametria, joka on jatkuvasti muuttuva, joten se voidaan helposti optimoida käyttämällä kvotitolverin algoritmia keskimääräisen neliövirheen minimoimiseksi. Tämän sarjan SES-mallin optimaalinen arvo 945 osoittautuu 0,2961: ksi, kuten tässä on esitetty: Tämän ennusteen tietojen keskimääräinen ikä on 10,2961 3,4 jaksoa, joka on samanlainen kuin 6-kertaisen yksinkertaisen liukuvan keskiarvon. SES-mallin pitkän aikavälin ennusteet ovat horisontaalinen suora. kuten SMA-mallissa ja satunnaisessa kävelymallissa ilman kasvua. Huomaa kuitenkin, että Statgraphicsin laskemat luottamusvälit eroavat toisistaan ​​kohtuullisen näköisellä tavalla ja että ne ovat huomattavasti kapeampia kuin satunnaisen kävelymallin luottamusvälit. SES-malli olettaa, että sarja on jonkin verran ennustettavissa enemmän kuin satunnaiskäytävä malli. SES-malli on itse asiassa erityinen ARIMA-mallin tapaus. joten ARIMA-mallien tilastollinen teoria tarjoaa hyvän pohjan SES-mallin luottamusvälien laskemiselle. Erityisesti SES-malli on ARIMA-malli, jossa on yksi epäsuositusero, MA (1) termi ja ei vakioaikaa. muutoin tunnetaan nimellä quotationARIMA (0,1,1) malli ilman vakiokuvaketta. MA (1) - kerroin ARIMA-mallissa vastaa SES-mallin 1-945 määrää. Esimerkiksi jos sijoitat ARIMA (0,1,1) - mallin ilman vakioja täällä analysoituun sarjaan, arvioitu MA (1) - kerroin osoittautuu 0,7029, joka on lähes täsmälleen yksi miinus 0,2961. On mahdollista lisätä oletus nollasta riippumattomalle lineaariselle suuntaukselle SES-mallille. Määritä vain ARIMA-malli, jossa on yksi epäsuositusero ja MA (1) termi vakiolla, eli ARIMA (0,1,1) - mallilla, jolla on vakio. Pitkän aikavälin ennusteissa on sitten trendi, joka vastaa koko arviointikauden aikana havaittua keskimääräistä kehitystä. Et voi tehdä kausittaista säätöä, koska kausittaiset säätömahdollisuudet eivät ole käytössä, kun mallityyppi on ARIMA. Voit kuitenkin lisätä jatkuvan pitkän aikavälin eksponentiaalisen trendin yksinkertaiseen eksponentiaaliseen tasoitusmalliin (kausittaisen säätämisen kanssa tai ilman) käyttämällä inflaation säätövaihtoehtoa ennustemenetelmässä. Asianmukainen inflaatioprosentti (prosentuaalinen kasvu) prosenttiyksikköä kohden voidaan arvioida datan avulla sovitetun lineaarisen trendimallin mukaiseksi rintamakerroin luonnollisen logaritmimuunnoksen yhteydessä tai se voi perustua muihin, itsenäisiin tietoihin, jotka koskevat pitkän aikavälin kasvunäkymiä . (Palaa sivun yläreunaan.) Ruskeat lineaariset (eli kaksinkertaiset) eksponentiaalinen tasoittaminen SMA-malleissa ja SES-malleissa oletetaan, että datassa ei ole mitään suuntausta (mikä on yleensä OK tai ainakin ei-liian-huono 1- edistyksellisiä ennusteita, kun tiedot ovat suhteellisen meluisia) ja niitä voidaan muokata siten, että ne sisältävät lineaarisen lineaarisen suuntauksen, kuten edellä on esitetty. Entä lyhytaikaiset trendejä Jos sarjassa on vaihteleva kasvuvauhti tai suhdannevaihtelu, joka erottuu selkeästi melusta, ja jos on tarpeen ennustaa yli 1 jakso eteenpäin, paikallisen trendin arvio voidaan myös arvioida ongelma. Yksinkertainen eksponentiaalinen tasoitusmalli voidaan yleistää lineaarisen eksponenttien tasoituksen (LES) mallin saamiseksi, joka laskee paikalliset arviot sekä tasosta että trendistä. Yksinkertaisin aikamuuttuva trendimalli on Browns-lineaarinen eksponentiaalinen tasoitusmalli, jossa käytetään kahta erilaista tasoitettua sarjaa, jotka keskittyvät eri ajankohtiin. Ennuskaava kaava perustuu kahden keskuksen välisen linjan ekstrapoloimiseen. (Holt8217-mallin hienostuneempia versioita käsitellään jäljempänä.) Brown8217s: n lineaarisen eksponenttipienytysmallin algebrallinen muoto, kuten yksinkertaisen eksponentiaalisen tasoitusmallin malli, voidaan ilmaista lukuisissa erilaisissa mutta vastaavissa muodoissa. Tämän mallin kvantitatiivista muotoa ilmaistaan ​​tavallisesti seuraavasti: Anna S merkitsee yksinkertaisesti tasoitettua sarjaa, joka saadaan soveltamalla yksinkertaista eksponentiaalista tasoitusta sarjaan Y. Eli S: n arvo ajanjaksolla t saadaan: (Muista, että yksinkertaisen Tällöin Squot tarkoittaa kaksinkertaista tasoitettua sarjaa, joka saadaan soveltamalla yksinkertaista eksponentiaalista tasoitusta (käyttäen samaa 945) sarjaan S: Lopuksi ennuste Y tk: lle. missä tahansa kgt1, saadaan: Tämä tuottaa e 1 0 (eli huijaa hieman ja anna ensimmäisen ennusteen olevan yhtä todellinen ensimmäinen havainto) ja e 2 Y 2 8211 Y 1. jonka jälkeen ennusteet saadaan käyttämällä yllä olevaa yhtälöä. Tämä tuottaa samoja sovitettuja arvoja kuin S ja S perustuva kaava, jos jälkimmäiset käynnistettiin käyttäen S 1 S 1 Y 1: tä. Mallin tätä versiota käytetään seuraavalla sivulla, joka kuvaa eksponenttien tasoituksen yhdistelmää kausittaisella säätöllä. Holt8217s Lineaarinen eksponentiaalinen tasoitus Brown8217s LES-malli laskee paikalliset arviot tasosta ja trendistä tasoittamalla viimeaikaisia ​​tietoja, mutta se, että se tekee niin yhdellä tasoitusparametrilla, rajoittaa datamalleja, jotka se kykenee sovittamaan: taso ja suuntaus eivät saa vaihdella riippumattomilla hinnoilla. Holt8217s LES-malli korjaa tämän ongelman sisällyttämällä kaksi tasoitusvakiota, yksi tasolle ja yksi trendille. Milloin tahansa t, kuten Brown8217s-mallissa, on paikallistason estimaatti L t ja paikallisen trendin estimaatti T t. Tällöin ne lasketaan rekursiivisesti ajan funktiona havaituista Y: n arvoista ja aikaisemmista tasoista ja trendistä saaduista arvioista kahdella yhtälöllä, jotka soveltavat erikseen eksponentiaalisia tasoituksia. Jos arvioitu taso ja trendi ajanhetkellä t-1 ovat L t82091 ja T t-1. vastaavasti, niin Y: n ennuste, joka olisi tehty ajanhetkellä t-1, on yhtä suuri kuin L t-1 T t-1. Kun todellista arvoa havaitaan, taso päivitetyllä arvolla lasketaan rekursiivisesti interpoloimalla välillä Y tshy ja sen ennuste, L t-1 T t-1 käyttäen painoja 945 ja 1-945. Arvioitu tason muutos, nimittäin L t 8209 L t82091. voidaan tulkita trendin meluisaksi mittaukseksi ajanhetkellä t. Päivitetty arvion trendistä lasketaan sitten rekursiivisesti interpoloimalla L t 8209 L t82091: n ja edellisen trendin, T t-1, arvion välillä. käyttäen painot 946 ja 1-946: Trenditasoitusvakion 946 tulkinta on samanlainen kuin tason tasoitusvakio 945. Pienillä arvoilla 946 tehdyt mallit olettavat, että trendi muuttuu vain hyvin hitaasti ajan myötä, kun taas malleissa suurempi 946 olettaa, että se muuttuu nopeammin. Mallin, jolla on suuri 946, uskoo, että kaukana tulevaisuus on erittäin epävakaa, koska trendinarvioinnin virheet tulevat melko tärkeiksi ennakoiden useamman kuin yhden jakson eteenpäin. (Palaa sivun yläosaan.) Tasoitusvakioita 945 ja 946 voidaan arvioida tavallisella tavalla minimoimalla yhden askeleen ennusteiden keskimääräinen neliövirhe. Kun tämä tehdään Statgraphics, arvioiden osoittautua 945 0,3048 ja 946 0,008. Hyvin pieni arvo 946 tarkoittaa, että malli olettaa hyvin vähän muutosta trendissä jaksosta toiseen, joten pohjimmiltaan tämä malli yrittää arvioida pitkän aikavälin trendiä. Vastaavasti käsitteen keskimääräisen ikärajan, jota käytetään arvioimaan paikallisen tason määrää, keskimääräinen ikä, jota käytetään paikallisen trendin arvioinnissa, on verrannollinen 1 946: een, vaikka se ei olekaan yhtä suuri kuin se . Tällöin osoittautuu 10 006 125. Tämä isn8217t on hyvin tarkka luku, koska 946: n estimaatin tarkkuus on todella 3 desimaalipistettä, mutta se on samaa yleistä suuruusluokkaa kuin näytteen koko 100, joten tämä malli on keskimäärin melko paljon historiaa trendin arvioimisessa. Seuraavassa esitetyn ennustealueen mukaan LES-malli arvioi jonkin verran suuremman paikallisen trendin sarjan lopussa kuin SEStrend-mallissa arvioitu jatkuva trendi. Myös arvioitu arvo 945 on lähes identtinen sen kanssa, joka on saatu sovittamalla SES-malli trendillä tai ilman, joten tämä on melkein sama malli. Nyt nämä näyttävät kohtuullisilta ennusteiksi mallilta, jonka oletetaan arvioivan paikallista trendiä Jos 8220eyeball8221 tämä tontti näyttää siltä, ​​että paikallinen trendi on kääntynyt alaspäin sarjan lopussa. Mitä on tapahtunut Tämän mallin parametrit on arvioitu minimoimalla yhden askeleen ennusteiden neliövirhe, ei pidemmän aikavälin ennusteita, jolloin trendillä ei ole paljon eroja. Jos kaikki olet tarkastelemassa ovat 1-askelta eteenpäin virheitä, et näe suurempaa kuvaa trendistä yli (esimerkiksi) 10 tai 20 jaksoa. Jotta tämä malli olisi paremmin sopusoinnussa tietojen silmämunkaiden ekstrapoloimiseen, voimme säätää manuaalisesti trendin tasoitusvakion siten, että se käyttää lyhyempää lähtötasoa trendin estimoinnille. Jos esimerkiksi valitaan 946 0,1, paikallisen trendin arvioinnissa käytettävien tietojen keskimääräinen ikä on 10 jaksoa, mikä tarkoittaa, että laskemme keskiarvon trendin aikana viimeisten 20 jakson aikana tai niin. Tässä on ennustettu tontti, jos asetamme 946 0,1 säilyttäen 945 0,3. Tämä näyttää intuitiivisesti kohtuulliselta tässä sarjassa, vaikka on todennäköisesti vaarallista ekstrapoloida tämä suuntaus yli kymmenen jaksoa tulevaisuudessa. Entä virhestatukset Tässä on mallin vertailu edellä mainituille kahdelle mallille sekä kolme SES-mallia. SES-mallin optimaalinen arvo 945 on noin 0,3, mutta 0,5 ja 0,2 saadaan samankaltaisia ​​tuloksia (hieman enemmän tai vähemmän vasteena). (A) Holts lineaarinen exp. tasoitus alfa 0.3048 ja beeta 0.008 (B) Holts lineaarinen exp. tasoitus alfa 0.3 ja beeta 0.1 (C) Yksinkertainen eksponentti tasoitus alfa 0.5 (D) Yksinkertainen eksponentti tasoitus alfa 0.3 (E) Yksinkertainen eksponentiaalinen tasoitus alfa 0.2 Heidän tilastot ovat lähes identtisiä, joten voimme todella tehdä valinnan perusteella yhden askeleen ennakkoennusteen virheistä datanäytteessä. Meidän on puututtava muihin näkökohtiin. Jos uskomme vakaasti siihen, että on järkevää perustaa nykyinen trendiarvio mitä on tapahtunut viimeisen 20 jakson aikana tai niin, voimme tehdä tapauksen LES-mallille 945 0,3 ja 946 0,1. Jos haluamme olla agnostisia siitä, onko paikallinen suuntaus, niin yksi SES-malleista voisi olla helpompi selittää ja antaa myös enemmän keskitietojen ennusteita seuraaville 5 tai 10 jaksoille. (Palaa sivun yläreunaan.) Mikä suuntaus-ekstrapolointi on paras: horisontaalinen vai lineaarinen Empiirinen näyttö viittaa siihen, että jos tieto on jo säädetty (jos tarpeen) inflaatioon, voi olla hankalaa ekstrapoloida lyhyen aikavälin lineaarinen suuntauksia hyvin pitkälle tulevaisuuteen. Nykyiset trendit voivat hidastua tulevaisuudessa erilaisista syistä, kuten tuotteiden vanhentumisesta, lisääntyneestä kilpailusta ja teollisuuden syklisistä laskusuhdanteista tai nousuista. Tästä syystä yksinkertainen eksponenttinen tasoittaminen toimii usein paremmin näytteestä kuin muutoin olisi odotettavissa, vaikka se onkin laaja-alaista horisontaalisen trendin ekstrapolaatiota. Lineaarisen eksponentiaalisen tasoitusmallin vaimennettuja trendimuutoksia käytetään käytännössä myös käytännössä toteuttamaan konservatiivisuuden muistiinpanoja trendisuunnitelmiinsa. Vaimennettu trendi LES-malli voidaan toteuttaa erityisenä esimerkkinä ARIMA-mallista, erityisesti ARIMA (1,1,2) - malleista. On mahdollista laskea luottamusvälejä eksponenttien tasausmalleja tuottavien pitkän aikavälin ennusteiden ympärille, tarkastelemalla niitä ARIMA-mallien erityistilanteina. (Varo: ei kaikki ohjelmisto laskee luottamusväliä näille malleille oikein.) Luottamusvälien leveys riippuu (i) mallin RMS-virheestä, (ii) tasoitustyypin (yksinkertainen tai lineaarinen) (iii) (s) ja (iv) ennusteiden etenemisjaksojen lukumäärä. Yleensä välejä levitettiin nopeammin, kun 945 on suurempi SES-mallissa ja ne levittyvät paljon nopeammin, kun käytetään lineaarista eikä yksinkertaista tasoitusta. Tätä aihetta käsitellään tarkemmin muistiinpanojen ARIMA-malleissa. (Palaa sivun yläreunaan.) MSE: n laskeminen Chirantan Basu: n avulla Keskimääräinen neliövirhe on neliövirheiden keskiarvo datanäytteen todellisissa ja arvioiduissa lukemissa. Erotuksen neliöllä poistetaan mahdollisuus käsitellä negatiivisia numeroita. Se myös antaa suurempia eroja enemmän painoa kuin pienemmät erot tuloksessa. Keskimääräistä neliovirhettä käytetään laajalti signaalinkäsittelysovelluksissa, kuten signaalin laadun arvioimisessa, kilpailevien signaalinkäsittelymenetelmien vertailu ja signaalinkäsittelyalgoritmien optimointi. Etsi ero näytteen todellisista ja arvioiduista datapisteistä. Esimerkiksi jos olet kehittänyt algoritmin osakekurssien ennustamiseksi, ennustetun osakekurssin ja todellisen hinnan välinen ero olisi virhe. Jos algoritmisi ennustaa 12, 15, 20, 22 ja 24 tietyn päivän viidestä varastosta, ja todelliset hinnat ovat vastaavasti 13, 17, 18, 20 ja 24, virheet ovat 1 (13 - 12) , 2 (17-15), -2 (18-20), -2 (20-22) ja nolla (24-24), vastaavasti. Laske virheiden neliö summa. Ensin neliö erot, ja lisää ne sitten ylös. Jatkamalla esimerkissä virheiden neliön summa on 13 (1 4 4 4 0). Jakaa virheiden neliön summa datapisteiden lukumäärän avulla keskimääräisen neliövirheen laskemiseksi. Esimerkin päätteeksi keskimääräinen neliövirhe on 2,6 (13 5). Keskimäärän siirto ja keskimääräinen neliövirhe Niin kauan kuin datassa on ylöspäin tai alaspäin suuntautuva suuntaus. k-jakson liikkuva keskiarvo on pienempi keskimääräinen neliövirhe kuin k1-jaksoilla saatu liikkuva keskiarvo Miksi tai miksi ei Ratkaisuyhteenveto Tämä ratkaisu on annettu 222 sanalla liitteenä olevassa. doc-tiedostossa. Se käyttää aikasarjan esimerkkiä keskimääräisen neliövirheen ennustamiseksi ja laskemiseksi. Lisää ratkaisu ostoskoriin Tyhjennä ostoskori Osto ratkaisu Lisää ostoskoriin Poista ostoskoriin Ratkaisu tarjoaa: BSc. Wuhan Univ. Kiina MA, Shandong Univ. Viimeisimmät palautteet kertoivat teille, jotka kertoivat, miten lähetän datatiedoston, joka on kielletty. Thanksquot quotgreatquot quotgreatquot Related Solutions. 0.205337 R Neliö 0.042163 Säädetty R Square -0.11748 Standardi. ennustavien kysymysten ratkaisemiseen naiiviin, liukuvaan keskiarvoon. aiempia keskiarvoja ja eksponentiaalisia. . Keskimääräisiä liikkeitä käytetään usein osakemarkkinoiden liikkeiden havaitsemiseen. . Liikkuva keskiarvo. . 0,395 Keskimääräinen kenttävirhe 0,6 Keskimääräinen absoluuttinen prosenttivirhe 47,1 prosenttia. . Sovellamme 5 kuukauden liikkuvaa keskimallista mallia tietoihin. Keskimääräisen neliövirheen (MSE) saamiseksi meidän on kerrottava neliölliset virheet. a. 15 b. 10 c. 9 d. 5 e. 12. 27.. . 19 ja laskea MSE ja MAD käyttäen liukuvaa keskiarvoa. painotettu liikkuva keskiarvo, eksponentti tasoitus, trendilinjan projektio. MSE (keskimääräinen kenttävirhe) MAD (keskimäärin 10 käyttäen 4 kuukauden painotettuja liikkuvaa keskiarvoa. Paino:.Ja voimme laskea juuren keskiarvon kvadratuurivirheen (RMSE) siten, että yksinkertainen 4 kuukauden liukuva keskiarvo. Keskimääräinen absoluuttinen poikkeama (MAD) ja keskimääräinen virhe (MSE) kolmen kuukauden painotetulla liikkuvalla keskiarvolla painojen kanssa. Poikkeama) ja MSE (keskimääräinen kvadratuurivirhe). . tai Aloita MAD - ja MSE-laskelmat keskiarvoja varten kaudella 6. Määrä Ft1 At (Todellinen - poikkeama liikkuva ennuste) Virheen keskiarvo 1 429 2. . Laske viiden vuoden painotettu liukuva keskiarvo painoilla .1. 1. 2. Määritä pienimmän neliösumman yhtälö. . X 2.5 Y 6 6 6 6 pienin neliö yhtälö. . CPI laskettuna kolmen kuukauden liikkuvasta keskiarvosta B7-C7. . Tämä on absoluuttisen arvon keskiarvo. Vaiheita keskimääräisen neliövirheen laskemiseksi Syötä solu E2. . Liikkuvat keskiarvot. Exponential Smoothing ja ennustaminen tutkitaan. . Liikkuvan keskiarvon liukuva keskiarvo. . 2,21 Keskimääräinen nelikenttävirhe 1,4 Keskimääräinen absoluuttinen prosentuaalinen virhe.

No comments:

Post a Comment